Email updates

Keep up to date with the latest news and content from Fluids and Barriers of the CNS and BioMed Central.

Open Access Highly Accessed Study protocol

Blood-brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging

Wandong Zhang12*, Huaqi Xiong123, Debbie Callaghan1, Hong Liu1, Aimee Jones1, Ke Pei14, Dorothy Fatehi1, Eric Brunette1 and Danica Stanimirovic12

Author Affiliations

1 Human Health & Therapeutics Portfolio, National Research Council of Canada, Ottawa, Canada

2 Faculty of Medicine, University of Ottawa, Ottawa, Canada

3 Current address: ApoPharma Inc., 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada

4 Current address: The Hospital affiliated with the Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

For all author emails, please log on.

Fluids and Barriers of the CNS 2013, 10:13  doi:10.1186/2045-8118-10-13

Published: 25 February 2013

Abstract

Background

Aβ transport (flux) across the blood-brain barrier (BBB) is thought to contribute to the pathogenesis of Alzheimer’s disease as well as to elimination of toxic amyloid from the brain by immunotherapy. Several BBB transporters have been implicated in Aβ exchange between brain parenchyma and the circulation, including efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2. Here we describe an application of in vivo optical imaging methods to study Aβ transport across the BBB in wild-type or animals deficient in specific efflux transporters.

Methods/Design

Synthetic human Aβ1-40 or scrambled Aβ40-1 peptides were labeled with the near-infrared fluorescent tracer, Cy5.5. The free tracer or Cy5.5-labeled peptides were injected intravenously into Abcb1-KO or Abcg2-KO mice or their corresponding wild-type controls. The animals were imaged prospectively at different time points over a period of 8 hours using eXplore Optix small animal imager. At the end of the observation, animals were sacrificed by perfusion, their brains were imaged ex-vivo and sectioned for immunofluorescence analyses.

Discussion

After appropriate circulation time, the fluorescence concentration in the head ROI measured in vivo was close to background values in both wild-type and Abcb1-KO or Abcg2-KO mice injected with either free dye or scrambled Aβ40-1-Cy5.5. In animals injected with Aβ1-40-Cy5.5, the deficiency in either Abcb1 or Abcg2 resulted in significant increases in fluorescence concentration in the head ROIs 2 hours after injection compared to wild-type animals. Fluorescence decay (elimination rate) over 2–8 hours after injection was similar between wild-type (t1/2 = 1.97 h) and Abcg2-KO (t1/2 = 2.34 h) and was slightly faster (t1/2 = 1.38 h) in Abcb1-KO mice. In vivo time-domain imaging method allows prospective, dynamic analyses of brain uptake/elimination of fluorescently-labeled compounds, including Aβ. Deficiency of either of the two major efflux pumps, Abcb1 and Abcg2, implicated in Aβ trafficking across the BBB, resulted in increased accumulation of peripherally-injected Aβ1-40 in the brain.

Keywords:
Alzheimer’s disease; Aβ peptides; Blood-brain barrier; Mdr-1a/b P-glycoprotein; Abcb1a/b; Abcg2; Optical imaging